首页> 外文OA文献 >An attempt to understand Barstar, Barnase and Olfactory receptor protein folding problems using mathematical biological approach
【2h】

An attempt to understand Barstar, Barnase and Olfactory receptor protein folding problems using mathematical biological approach

机译:尝试使用数学生物学方法了解Barstar,Barnase和嗅觉受体蛋白折叠问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein folding problem as attracted structural biologists immensely (1). Till date, correlation between X-ray crystallographic and NMR data are considered to be the best methods for determining structure of intra-cellular proteins. Generating crystals and finding correct experimental conditions for NMR are largly a gamble and resultant data processing highly time consuming. Even if, a large number of laboratories around the world and India make crystals of protein but majority of them fail to generate crystallographic data less than or equal to 10A resolution with currently available instruments. This means that X-ray crystallographic data have been generated from protein crystals with non-uniform lattices. We believe that a large portion of (chain of amino acids) all proteins, be it an intra-cellular, transmembrane or extra-cellular proteins form uniform lattices following precise deterministic mathematical rules in natural condition inside cells or membranes or in extra-cellular conditions. This hypothesis has several advantages. First, stacking of protein chains like lattices (lattices of helix or beta-sheet etc.) allows a particular protein to resist forces of compression and relaxation. Secondly, it will be easier to expose hydrophobic and hydrophilic domains following a mathematical rule described in this paper. Barstar, Barnase and olfactory receptors (ORs) have 90, 110 and ~312 amino acids respectively. Using Young-Fibonacci graph area model, here we show that all naturally available protein folding problems can be solved or a preliminary idea about their secondary and tertiary structures can be predicted. This is absolutely necessary considering the fact that there are zillions of proteins present in the animal and plant world. The process of X-ray crystallography and NMR followed by computer modeling for elucidating the secondary and tertiary structures of these vast numbers of proteins might take hundreds of years.
机译:蛋白质折叠问题引起了结构生物学家的极大关注(1)。迄今为止,X射线晶体学与NMR数据之间的相关性被认为是确定细胞内蛋白质结构的最佳方法。生成晶体并为NMR找到正确的实验条件是一场赌博,结果数据处理非常耗时。即使世界各地和印度的大量实验室都在制造蛋白质晶体,但大多数实验室无法使用当前可用的仪器生成小于或等于10A分辨率的晶体学数据。这意味着X射线晶体学数据是从具有不均匀晶格的蛋白质晶体生成的。我们相信,所有蛋白质(氨基酸链)中的很大一部分,无论是细胞内,跨膜还是细胞外蛋白质,在细胞或膜内的自然条件下或细胞外条件下均遵循精确的确定性数学规则,形成均匀的晶格。这个假设有几个优点。首先,蛋白质链如晶格的堆积(螺旋或β-折叠等)允许特定的蛋白质抵抗压缩和松弛的力。其次,遵循本文描述的数学规则,更容易暴露疏水和亲水区域。 Barstar,Barnase和嗅觉受体(OR)分别具有90、110和〜312个氨基酸。使用Young-Fibonacci图面积模型,这里我们可以解决所有自然可用的蛋白质折叠问题,或者可以预测有关其二级和三级结构的初步思想。考虑到动植物世界中存在无数蛋白质的事实,这绝对是必要的。 X射线晶体学和NMR的过程以及随后的计算机建模,以阐明这些大量蛋白质的二级和三级结构可能需要数百年的时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号